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Strategies for the stereoselective synthesis of mycobacterial arabinan were explored. Arabinofuranosyl donors with various protective groups
were screened in terms of suitability for ~ f-(1,2-cis)-selective glycosylation. The protective group was found to affect the stereoselectivity of
arabinofuranosylation.  f3-Selectivity was drastically enhanced by using donors protected with 3,5-TIDPS, possibly due to conformational constraints
on the furanose ring. Synthesis of heptaarabinofuranoside was then performed to demonstrate the practicality of this methodology.

Glycans that consist of furanosides are widespread constitu-from the cell wall skeleton of mycobacteria, such as Bacillus
ents of glycoconjugates and cell-surface polysaccharides inCalmette-Guérin (BCG-CWS) fromdl. bouwis, are known to
bacteria fungi? and parasite$.They play key roles in the  be activators of innate immunity? Although the mechanism
infectivity and pathogenicity of these microbes. Among them, of BCG-CWS-initiated immunity has been proposed to
mycobacterial cell wall arabinans are attracting particular involve the activation of macrophages via a Toll-like receptor
attention.Mycobacterium tuberculosis, the causative agent (TLR)2? its structural basis is difficult to define due to the
of tuberculosis remains rampant and is a growing threat extreme complexity of BCG-CWS. The structure of the CWS
worldwide due to the emergence of strains that have is unique, being composed of mycolic acid (MA)arabinan,
multidrug resistance (MDR).Arabinan biosynthesis by Db-galactan, a linker disaccharide-Rhep-(1,3)-a-GIcNAC),
mycobacterial arabinofuranosyl transferases (Arafissh and peptidoglycan (PG) (Figure ¥)Mycobacterial arabinans
novel therapeutic targétalthough the precise mechanism consist of an [o-Araf(1—5)o-Araf]repeat, which is linked
has yet to be elucidated. On the other hand, adjuvants derivedo the inner complex and is capped by a branched motif.
The latter contains terming-Araf, linked to the 2-position
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Figure 1. Structure of a mycobacterial arabinan terminus.

of the penultimater-Araf. These Aréresidues are O-acylated particularly sensitive to the nature of R (Scheme 2 and Table
at their C-5 positions by mycolic acid. 1, entries 1-5).14 Specifically, thep-methoxybenzyl (PMB)-

To achieve the synthesis of mycobacterial arabinan,
introduction of the terminaB-Araf residue is potentially _
problematic. Whereas-Araf linkage is easily accessible with ! i
a 2-O-acylated donor, formation of tifeAraf linkage is not Scheme 1. Preparation of Arabinofuranosyl Donors

straightforward. The difficulty of the latter derives from its ROL OBM i Tops Teps: tmuns

1,2-cis relative stereochemistry, which prohibits the use of \ D o o CaHiCHs

neighboring group participation for stereochemical control. B0 S 4 OB e

Because the conformation of the furanoside ring is more (HPIRSO

flexible than that of pyranoside, factors that affect the ™09 raso/ )| p700r o jomes ) joes

stereochemistry of O-furanosylation are difficult to general- k—hsm | ("Pr)zsé\u (t-Bu)QS!;w k_h

ize. For the construction gi-linked Arafglycoside, several B0 "GP0 ST (PnSm0 ¥ o STl meso STO

innovative methods have been reporte@f particular note 2 _m 3 — s 8

were approaches throughBdisplacement via-trifrate (a c PM3 h TIPS

2,3-anhydro-type donor and a carboxybenzyl (CB) donor) i DY s

developed by LowaAf2and by Kim! respectively. As an Teso o4 TROSE B G et

alternative to these, we explored the possibility of achieving NeOMe | Tesor

pB-selective furanosylation by tuning the protective group  1gee0 0% / HO 25tdine, 75% . ¢ _—

patterns. We report herein the stereoselective synthesis of u on oy —F .49

B-Araf using 3,50-tetraisopropyldisiloxanylidene (TIPDS)- o 5T ovr qusnt <"-F’”23C1)' ° o Jpsart

protected thioglycoside as a donor. This method was then ! J AT N0 0" e <'+Pr)2\3i—1c; Stol = -4

successfully applied to the synthesis of heptaarabinofurano- in o Sleps k—hsm o oM Tsor

side:* HC; -DTQ\(nBu) s! Oy ewress
Because termings-Araf residues of AG are O-5 myco- N

lated, this position must be distinguishable from others to "

approach mycolated arabinan. Therefore, we began by
screening the effects of O-5 protective groups on the
stereoselectivity of glycosylation using 2(3-benzyl-
protected donor& and2 (Scheme 1), through activation by
NIS-AgOTf.13 We previously reported that selectivity was

protected donorlc gave a favorable result, although the

selectivity was modest. On the other hawdhitrobenzyl-

(1d) or acyl-substituted (1b) donors gave theglycoside

as the major product, suggesting that the electron density of
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Table 1. Effect of Protection of the Glycosyl Donor with
Various Protections at the 5 Position on Arabinofuranosylation

temp time/h product yield (o/p3)

entry donor acceptor solvent®

1e la 12 De -78°C 1 14a  97% (9.4:1)
2a 1b 12 De —-40°C 35 14b  65% (1.3:1)
34 1c 12 De -78°C 25 l4c  93% (1:2.6)
4 1d 12 De —40°C 1 14d  88% (1.9:1)
5a le 12 De -78°C 1 l4e 93% (1:1.5)
6 2a 12 De -78°C 1 14a 89% (7.6:1)
7 2c 12 De -78°C 1 14c  81% (1:2.7)
8 1c 12 D¢ 1t 24 l4c  82% (1.3:1)
9 1c 12 Td 0°C 8 l4c  45% (2.0:1)
10 lc 12 X4 0°C 1 l4c  75% (1:1.1)
11 2c 13 De —-40°C 3 15¢  94% (1:4.3)
12 2c 13 D¢ -60°C 3 15¢  85% (1:8.6)

afFrom ref 13PD: CH,Cl,. T: toluene. X: xylene¢NIS (1.2~2.0
equiv), AgOTf (0.3+1.0 equiv).d MeOTTf (2.4 equiv), DTBMP (2.4 equiv).

gave similar results (Table 1, entries 6 and 7). A weaker

activating agent, MeOTf gave low selectivity (entries 8

and 9): however, as we previously reported, substantial rateProtected ), 3,50-di-tertbutylsilylen
enhancemeht was observed in frozen solvent (entry 10).

prepared. When glycosylation with acceptt3 was per-
formed, it was found that the use of IBTIPDS-protectetf
donor 4g or 4h resulted in the formation of the desired
p-isomer in a markedly selective manner (Table 2). That tri-

Table 2. Effect of Protection of the Glycosyl Donor on
Arabinofuranosylation

entry donor acceptor product yield (o/p)
1 3 13 15¢f 96% (1:2.45)
2 4g 13 15g 94% (1:12.5)
3 4h 13 15h 93% (1:20.0)
4 5 13 15i 70% (1:5.36)
5 6 13 15j 99% (5.26:1)

O-silyl protection itself was not the dominant factor for this
selectivity was evident from the results with regioisomerically
é?masked %), and
noncyclically protected § donors. Comparison of these

The stereochemistry of the anomeric center of glycosylated results suggested that the conformational restraint introduced

products was confirmed by (C-1) and3Jy;-n, values!®
B-isomer, 6 (C-1) 97~103 ppm,3Jy;-n2 = 4~5 Hz;
o-isomer,0 (C-1) 104~111 ppm 3Ju1-n2 = 1~3 Hz. Further
validation for the stereochemsitry of the-isomer was

by the eight-membered ring 3,5-O-protection was responsible
for the enhanceg-selectivity.

The marked differences in selectivity betwetin(a/ =
1:20) and5 (a/ = 1:5.36) are reminiscent of the work of

obtained by differential NOE experiments, which revealed Woerpel et al?* who investigated the allylation of bicyclic

the NOE between H-1 and H-2.

lactol acetated6 and17 (Figure 2). They found that eight-

Subsequent investigation revealed that the selectivity wasfive bicyclic acetatel6 gave higher selectivity in favor of

also sensitive to the structure of the acceptor. Whewas
reacted with 3,39-benzyl-protected acceptbB,'® significant
enhancement gf-selectivity (a/f= 1:4.6) was observed.

the S-isomer than the six-five counterpat?. In light of
Woerpel's hypothesis, we surmise that the nucleophilic attack
from the o-face is disfavored for both and4h due to the

Selectivity was improved to 1:8.6, when the reaction was 1,2-gauche interaction between the entering acceptor and the

conducted at—60 °C. To achieve higher selectivity, we

pseudoaxially oriented C-2 hydrogen. In the case of six-five

turned our attention to the effects of cyclic protective groups bicyclic 5, however, the3-attack should lead to an initial
(Scheme 1). Our hope was that the conformational perturba-conformer with a 3,5-silylene group possessing a distorted
tion associated with the formation of fused rings would cause nonchairlike conformation, thereby reducing the preference

favorable stereoelectronic effeéfsTo that end, donors
having 2,3-O- 8) or 3,5-O- @g, 4h, 5) cyclic protection were

Scheme 2. Various Arabinofuranosyl Donors
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of the pathway toward thg-isomer. Molecular modeling
studied® of glycosylated products provided an alternative
interpretation of the selectivity; the total energy of the
p-linked product was 3.7 kcal/mol lower than that of the
o-isomer, suggesting that the formation of fhésomer was
the thermodynamically favored process, which may rational-
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113, 1434-1435. (b) Crich, D.; Sun, 8. Am. Chem. Soc997, 119,
11217-11223. (c) Ito, Y.; Ohnishi, Y.; Ogawa, T.; Nakahara,Synlett
1998, 1102—1104. (d) Jensen, H. H.; Nordstrgm, L. U.; BolsJMAmM.
Chem. Soc2004,126, 9205—9213.
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4874,

(22) Very recently, Boons et al. reported a practical approaci-ior
arabinofuranosylation using benzyl-protected1 as a donor. Zhu, X.;
Kawatkar, S.; Rao, Y.; Boons, G.-l.Am. Chem. So2006,128, 11948—
11957.
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Figure 2. Plausible explanation for the:selective addition to the
activated donor. The black arrow shows the directionfiattack

to the anomeric carbon, and the white arrow shows the direction
for a-attack. In the case af-attack, there seems to be a large steric
repulsion from thex-hydrogen atom at C2.

ize the selectivity based on Hammond's postufate the
global minimum structure, thg-product had pseudoaxially
oriented glycoside linkages, which may be favorable in light
of the anomeric effect (see Supporting Information).
Inspection of other acceptors shows that, to achieve the
[-selective glycosylation, the acceptor should be moderately
bulky. For instance, a reaction @fg with less-hindered
accepto20? displayed no selectivity (Table 3). We speculate

Table 3. Results of Glycosylation ofg/4hwith Other
Acceptors

entry donor acceptor yield/% o/ff

1 4g 13 94 1:12.5
2 4h 13 93 1:20.0
3 4g 20 97 1:1.15
4 4g 21 100 1:7.35
5 4h 21 61 1.80:1
6 4g 22 77 1:2.66
7 4h 22 47 1:2.80

HO- OBn OH

T G, K

omMP d
g0 OMe 59 PO g OMP 55

that, when the acceptor is not sufficiently hindered, steric
repulsion with the C-2 hydrogen would be inconsequential.
In addition, the results with hindered accep®t were
drastically different betwee#g and4h, thus suggesting that
the steric factor plays a major role in controlling the

With an arabinosyl donor suitable for the stereoselective
formation of thes-Arafl—2Araf linkage at our disposal, we
conducted the synthesis of heptasacchaB@éScheme 3),

Scheme 3. Synthesis of Heptaarabinofuranoside
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which corresponds to the branched terminal structure of
mycobacterial arabinogalactan (Figure 3). Thus, disaccharide
23%%¢ was first glycosylated with 2-Bz-protected donor
2412¢ to give 25a. Removal of the TIPDS group ga2éb,
which was further glycosylated with 2-O-CAc-protected
261 The resultant pentasacchariewas converted to diol

28, which was subjected to a reaction with fhselective
donor4g to give 29 in high yield and selectivityZ9/other
isomers= 10.8:1). Subsequent deprotection was conducted
in a stepwise manner to giv&2.

In conclusion, the stereoselective synthesis of mycobac-
terium arabinan was achieved. Tlfisselective arabinofura-
nosylation was applied to the synthesis of nonreducing termi-
nal heptaarabinofuranoside in the mycobacterial cell wall.
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